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a b s t r a c t

The finite difference time domain (FDTD) method, adapted for magnetic field diffusion
problems, is used to study the electromagnetic induction in moving materials by including
motional emf in standard FDTD electromagnetic equations. The material movement is
implemented by continuously changing material properties in each computational cell
consistent to material advection. The flux corrected transport (FCT) algorithm is used to
transport magnetic field in a fixed eulerian cell. A higher time-step is achieved by artifi-
cially increasing permittivity of the medium. This new approach is validated with standard
analytical solutions for planar magnetic flux compression system and magnetic field diffu-
sion in moving conductors with a non-relativistic velocity. To our knowledge, this is the
first approach to use FDTD method for electromagnetic problems involving material
motion.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic flux compression systems [1] are in widespread use for generating megagauss magnetic fields for a variety of
applications. Numerical simulations for such systems can involve complex geometries as well as multiple materials like con-
ductors, dielectrics and plasma. More importantly, these systems involve material motion in the presence of intense mag-
netic fields. These simulations rely on accurate calculation of the penetration of electromagnetic fields through moving
conductors. Such a calculation yields the spatio-temporal evolution of electromagnetic fields, along with lumped parameters
like the time-dependent resistance and inductance.

One commonly-used method is to solve the magnetic field diffusion equation [2]. However, the electrical conductivity,
and hence the magnetic field diffusion coefficient, can vary by orders of magnitude in space and time. This leads to numerical
problems, requiring a near-zero time-step. The problem is further complicated by imperfectly-known boundary conditions
for the magnetic field. Another difficulty in magneto-hydrodynamic (MHD) calculations for such systems is the self-consis-
tent coupling of external circuit equations to hydrodynamic calculations via the current density [2].
. All rights reserved.
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Analytical treatments of magnetic field diffusion in such systems are only possible for simple geometries, e.g., slab geom-
etry [3–5]. To our knowledge, none of the closed-form expressions can handle all the complexities listed above.

Earlier works by Holland in [8], have explored the capability of finite difference time domain (FDTD) method [6,7] for cal-
culating magnetic field diffusion into a cavity created by conducting wall when exposed to incident electromagnetic wave.
Higher time-step is achieved by artificially increasing permittivity of the medium. Similarly in [9], a reduced velocity of light
approach is used for the analysis of Nonlinear magnetic field diffusion using FDTD method in three-dimensions for static
conductors. However, those calculations were limited to static conductors exposed to external incident electromagnetic
wave. Magnetic flux compression systems involve field diffusion in to a moving conductor.

There is thus a need for a more general method that can handle real-life problems with all the complexities listed earlier.
The finite difference time domain (FDTD) method for electromagnetics is one such method. This method directly updates
Maxwell’s curl equations in time, using an explicit algorithm, to yield the spatio-temporal variation of electric and magnetic
fields [6,7]. It allows setting up of complex, multi-material configurations. Furthermore, the time domain analysis allows
handling of arbitrary time-dependent waveforms of current. This technique thus allows a study of real-life configurations
with practically no limitations on the geometric complexity, the materials used or the temporal waveforms.

A detailed description of the application of FDTD method for such systems and its advantage over conventional methods
is available in our earlier work [11–13]. Those studies were, however, limited to static conductors.

In the present study, we have included velocity-dependent electromagnetic induction terms in the FDTD equations. A
leapfrog method [7] is used to update electric and magnetic fields, and a Flux Corrected Transport (FCT) algorithm
[14,15] is used for magnetic field transport. This new method can be used for electromagnetic problems involving material
movement.

In the present work, we report details of this modified FDTD method for electromagnetic problems involving material
movement, related issues and its validation. We restrict our calculations to two spatial dimensions (2D), although its three
dimensional (3D) implementation is straightforward. To our knowledge, this is the first application of this powerful tech-
nique to systems involving material movement.

2. Method and important issues

2.1. Algorithm

The past decade has seen rapidly-increasing growth of the finite difference time domain method to calculate scattering
and absorption of electromagnetic waves from lossy dielectrics as well as conducting objects [16–18]. The FDTD method is
an explicit time domain approach for solving Maxwell’s curl equations. For problems involving static conductors, these equa-
tions can be written
r�~E ¼ �l @
~H
@t

ð1Þ

r � ~H ¼ e
@~E
@t
þ r~E ð2Þ
on spatial grids, based on a technique introduced by Yee [7]. Here, ~E and ~H represent the electric field and magnetic field
intensities, respectively, while r, l and e represent the electrical conductivity, magnetic permeability and permittivity
respectively. The finite difference equations are stepped in time, alternately updating the ~E and ~H components at each grid
point. A typical Yee cell in 3D, and the corresponding locations of different field components, is shown in Fig. 1.

The object to be modeled is set up in a Cartesian computational grid with mesh sizes of Dx, Dy and Dz in the x-, y- and
z-directions, respectively. The time-step is governed by the Courant criterion for speed-of-light transit through the smallest
computational cell and it is calculated using Eq. (3) [6,7]
Dt ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Dx2 þ 1

Dy2 þ 1
Dz2

q ð3Þ
where c ¼ 1=
ffiffiffiffiffiffil�p

is the velocity of light.
For problems of our interest, involving magnetic field diffusion, the standard finite difference form used in FDTD [6,7] is

not suitable. It has been suggested in [20,21] that exponential time differencing (ETD) be used in finite difference time do-
main implementation in high conductivity regions were large dissipation exists. This suggestion is based on the belief that
ETD permits rDt=�� 1, while maintaining accuracy in those regions. The rDt=�� 1 condition arises from the fact that the
time-step involved should resolve the conduction current relaxation timescales. More details can be found in [22].

Hence the standard scheme is replaced by an explicit exponentially-differenced form, to avoid the possibility of diffusion
instability [19,9,10]
E
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Fig. 1. Yee cell with electric and magnetic field locations.
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where superscript ‘n’ is the time index and subscript x denotes the x-component of a vector. Other components of ~E follow
similar relations. This modification increases computational accuracy in the presence of dissipation. This scheme reduces to a
standard differencing form when rDt=�� 1, so that e�rDt=� � 1� rDt=�. This approach allows handling of large values of r.
A more detailed analysis of exponential time differencing for FDTD in lossy dielectrics is given in [22].

Let us now consider problems involving magnetic field diffusion through moving conductors. We limit ourselves to non-
relativistic cases, which is sufficient for practical systems such as magnetic flux compression systems. Hence the effect on
displacement current can be neglected. The motion of a conductor in an external magnetic field can create an electric field
or voltage (motional emf) that can induce a flow of current in the conductor. This can be expressed mathematically by the
relation
~E0 ¼~Eþ~v �~B ð5Þ
The conduction current density~J, which was written as r~E in Eq. (2), must now include the motional emf
~J ¼ r½~Eþ~v �~B�
where ~B ¼ l~H. This corresponds to a motional electric field, ~Ev ¼ lð~v � ~HÞ, induced in materials having finite conductivity
and velocity.

For most problems in time-dependent field problems, where currents are induced by non-relativistic velocities, ~D0 � ~D
and ~B0 � ~B, (see, e.g., [34,23]). Thus, the electric field and hence conduction current density will be the only variables that
differes significantly.

We have examined two different methods of adding~Ev term, which are explained below. The relevant theories followed
and its mathematical formulations can be found in [24].

2.1.1. Scheme-1
One way of adding this motional electric field term is described below:
Calculate total electric field, ~E0 ¼~Eþ~v �~B. Now, update electric field using Eq. (6) which include the ~v �~B term
@~E
@t
¼ �r�

~H
e
þ r

e
~E0 ð6Þ
The magnetic field can be updated using Eq. (7)
@~H
@t
¼ �r�

~E
l

ð7Þ
We found that the results obtained using this scheme is leads to ripples in numerical solutions, which will be discussed in
later sections.
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2.1.2. Scheme-2
The ripple problem can be removed by using special algorithms like the total variation diminishing (TVD) scheme [25–27]

or the method of characteristics (MOC) [28]. A comparative study on TVD scheme and the flux corrected transport (FCT)
method can be found in [27], which also lists some advantages of the FCT algorithm over the TVD scheme. The FCT procedure
adds higher order anti-diffusive terms to the stable but diffusive low-order solution and a limiter ensures that no new min-
ima or maxima with respect to the low-order solution are created [14,15]. This method ensures a monotonic solution. A de-
tailed discussion can be found in [14,15]. The FCT algorithm satisfies r � ~H ¼ 0 condition fairly accurately, limited only by
round off errors. It is also efficient at resolving sharp spatial gradients. Finally, its implementation is simple. We have, there-
fore, opted to use the FCT algorithm to modify the standard FDTD equations for magnetic field diffusion through moving
conductors.

We have added the motional electric field to Eq. (1). This leads to the following equation for magnetic field updation:
@~H
@t
¼ � 1

l
r�~E0 þ r �~v � ~H ð8Þ
Applying some mathematical treatment, along with the condition r � ~H ¼ 0, the final form of Eq. (1) becomes
@~H
@t
þr � ð~v~HÞ ¼ SH ð9Þ
where r � ð~v~HÞj ¼ Ri@ðv iHjÞ=@xi in Cartesian coordinates. The source term SH is given by
SH ¼ r � ð~H~vÞ �
1
l
r�~E0 ð10Þ
Eq. (9) is solved using the flux corrected transport (FCT) method. We have used a multi-dimensional flux limiter suggested in
[29] and [30].

The electric field equation can be updated using the following equation which include ~v �~B term:
@~E
@t
¼ �r�

~H
e
þ r

e
~E0 ð11Þ
A variety of boundary conditions are available for FDTD algorithms [16]. It turns out that in the problems of interest here, the
choice of boundary condition is not very critical, as long as the boundary is far from the the object through which magnetic
field diffusion is taking place. Hence we have used Mur’s second order outer radiation boundary condition (ORBC) [31,6]. For
other problems, more appropriate boundary conditions could be used.

Due to material movement through the mesh, the electrical conductivity throughout the domain must be updated at
every time-step. This is particularly critical at conductor–insulator interfaces, where the conductivity changes by orders
of magnitude. The conductivity in each computational cell is calculated based on the mass density – details are given in Sec-
tion 2.4. Hence it is necessary to evolve material density throughout the domain, given the spatio-temporal distribution of
velocity. This is done using the continuity equation
@q
@t
þr � ð~vqÞ ¼ 0 ð12Þ
where ~v is the material/conductor velocity. The velocity distribution in space and time, throughout the computational do-
main, must be externally specified. In the present study, the velocity distribution required throughout the domain in space
and time are given as an input parameter. Updation of velocity consistent to the deceleration of the moving conductor by
magnetic pressure lies beyond the scope of this work.

2.2. Important issues

In our previous work [11], we gave a detailed discussion of major issues that arise while using the FDTD method for
solving magnetic diffusion problems for static conductors. A few important issues are summarized here for ready
reference.

Firstly, the modeling of curved geometries, in a Cartesian grid, leads to ‘‘staircase” errors that must be minimized by
using a sufficient number of cells [6]. Secondly, the cell size must not exceed 10% of the free-space wavelengths k cor-
responding to the frequencies of interest [6]. Thirdly, since an ORBC is used, it is necessary to maintain a distance of at
least 1–2 k between the object and the domain boundary in all directions [6]. Fourthly, there must be a sufficient num-
ber of cells in one skin-depth, for proper resolution of the penetration of the magnetic field. Fifthly, the wavelength cor-
responding to the applied frequency should be very different from system dimensions, to eliminate the possibility of
radiation, which would not be significant in a real-life system. These criteria, put together, lead to a rather large com-
putational load.
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This problem can be solved by using an artificially increased permittivity for the medium by a large factor, which reduces
the speed of light and thereby permits much larger time-steps [9–11]. Since k is proportional to the speed of light, the cell
size required to resolve the wavelength becomes a few mm. Therefore, there is a great reduction in computational demand
by increasing �. However, the cell size required to resolve the skin-depth is 10–1000 times smaller, depending upon the con-
ductivity and frequency. The only solution is to have variable meshing, which is constant through the conductor region, but
expands in the free-space region surrounding the object.

Another issue is to ensure that the magnetic diffusion timescale in good conductors is not affected by the use of an arti-
ficially large permittivity to achieve higher time-steps in the simulation. The magnetic diffusion time in a conductor having
thickness ‘a’ and conductivity r is given by td ¼ lra2. This time scale will not be affected by increasing � in the medium.
However, the time-step used in the computation should not exceed the magnetic diffusion time scale and it should be able
to resolve the magnetic diffusion time. In our simulations, we have scaled the permittivity keeping these constraints in mind.
A detailed discussion on these issues and its solutions are mentioned in our previous work [11].

For effective magnetic flux compression, the quantity Rd, defined as the ratio of magnetic diffusion time to compression
time, should satisfy Eq. (13). In our present study, the quantities which determines Rd are chosen in such a way that the over-
all computational requirement is minimized while satisfying Eq. (13).

Despite all these changes discussed above, due to the large number of constraints that have to be satisfied, the compu-
tational demand is too large to be handled on one CPU. Hence the computer code has been parallelized using message pass-
ing interface (MPI) [32] in all directions, with the flexibility to independently specify the number of sub-divisions in each
direction.

2.3. Theoretical model for a simple system

This new method has been validated against analytical solutions for the spatio-temporal distribution of the magnetic
field, given in [3–5]. These solutions apply to a simple flux compression system having the slab geometry shown in Fig. 2.
The system consists of a slab with a finite conductivity r and thickness a, placed inside two ideally conducting walls with
infinite conductivity. The slab moves across a transverse magnetic field with a uniform velocity, v. B10 and B20 are the initial
transverse (z-component) magnetic fields to the left and right of the conductor. In Fig. 2, L is the length of the ‘compression
volume’. As the slab moves to the right, it reduces L, leading to an amplification in the external magnetic field B20 by flux
compression and a dilution of magnetic field B10 behind the slab [4,5].

The process involved are (a) the induction of electromagnetic fields in the conductor resulting from its motion across
Bðx; tÞ, and (b) diffusion of this magnetic field through the moving conductor, etc. [3–5]. The extent of field amplification de-
pends on two competing effects. Diffusion of flux through the conductor reduces the total flux left in the compression vol-
ume. The remaining flux is compressed into a progressively smaller volume, leading to an increase in magnetic field. The
efficiency of flux compression in the compression volume is related to a dimensionless number
Fig. 2.
magnet
Rd ¼
lra2v

L
ð13Þ
which is the ratio of the diffusion time td ¼ lra2 to the compression time tv ¼ L=v . The higher the value of Rd, the better is
expected to be the conservation of flux in the compression volume.

This is an initial-boundary-value-problem (IBVP) and can be solved analytically as in [4,5]. The displacement current is
neglected in [4,5] while deriving analytical solutions, since the electromagnetic field changes are produced by non-relativ-
istic conductor motion. Also, the diffusion of electromagnetic field through the moving conductor is described by the linear
parabolic diffusion equation, since joule heating is neglected for the present study. More details can be found in [4,5].

In order to remain consistent with[3–5], we have neglected the deceleration of the moving conductor and its compression
due to magnetic pressure, which becomes significant at high fields. However, it is easy to include both effects in the FDTD
calculation.
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2.4. Computational model

The FDTD setup is as shown in Fig. 3. The object is modeled in a 2D Cartesian grid. For the present problem, only Ex and Ey

components of the electric field and the Hz component of the magnetic field exists. The electric and magnetic field compo-
nents are located according to a 2D Yee cell configuration, as shown in Fig. 4. Material quantities like conductivity, r and
density, q are specified at the center of a computational cell, while velocities are specified at the faces of the cell. The spec-
ification of field locations in this manner requires boundary conditions only for electric field components. In order to remain
consistent with FCT algorithms [14,15], the velocities are specified on the edge faces.

The conductor, having a thickness a, is enclosed by a perfectly electrically conducting (PEC, r ¼ 1) wall. Mur’s outer radi-
ation boundary condition (ORBC) [31,6] has been used to terminate the computational domain. In order to avoid unphysical
reflections from the termination boundary due to ORBC, a minimum distance D must be maintained between the PEC wall
and the computational boundary in all directions. D is typically 1–2 k [6]. A gap of 20–40 cells has been found to be sufficient
for the present problem.

For the present problem we found that no field get diffused through PEC wall and therefore the number of cells between
the object (PEC wall) and the boundary can be reduced considerably. The initial magnetic fields B10 and B20 are specified ana-
lytically at two different source excitation points, see Fig. 3, with one computational cell for each source excitation point. The
field observation points B1 and B2 are used for recording magnetic field at different time.

In the FDTD method, the highest frequency that can be handled is limited by the mesh-size. From stability considerations,
the free-space wavelength k corresponding to that frequency should not be smaller than four computational cells [6]. For rea-
sonable accuracy, it is desirable to have at least 10 cells in one k. Now, a step-change in any quantity contains all frequencies,
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so it cannot be handled by any practical mesh-size. Hence it is not acceptable to start the simulation with a jump in B1 and B2

to their desired values B10 and B20. Starting from zero values of all field components, a gradual increase becomes necessary.
We have used a sinusoidal excitation function given by Eq. (14)
Bz ¼ B0 sinðxtÞ; B0 ¼ B10;B20; 0 < t < tB ð14Þ
where tB is the 0–100% rise-time of the magnetic field, corresponding to the quarter-wave time, when x ¼ 2p=ð4tBÞ is the
angular frequency. This will fill up uniform magnetic fields B10 and B20 at the left and right side of the conductor respectively.

Apart from satisfying the stability criterion, the field rise-time for both source excitation points is determined in such a
way that negligible diffusion takes place into the slab before the movement, so as to trap most of the flux between the con-
ductor and PEC wall.

The conducting slab is held stationery until t ¼ tB, at which point is suddenly starts moving to the right with a constant
specified velocity, compressing the initial magnetic field along the x-direction. The material density in each computational
cell is evolved using Eq. (12). A multi-dimensional flux corrected transport (FCT) method is used for this purpose [29]. The
material conductivity ðrmÞ for material m in each computational cell is calculated using an approximate expression given by
Eq. (15), which is based on the assumption that the material is uniformly filled in the entire region of the cell
rmði; jÞ ¼ rm
0 �

qmði; jÞ
qm

0
ð15Þ
where qm
0 , qmði; jÞ are the normal density of material ‘m’ and its instantaneous material density, respectively. Similarly rm

0 ,
rmði; jÞ are electrical conductivities corresponds to normal density and instantaneous density, respectively. Here, cell indices
i and j correspond to the x- and y-directions, respectively. The total conductivity in a computational cell is calculated using
the weighted average of individual conductivities of all materials present in that cell, which can be expressed as in Eq. (16)
rTði; jÞ ¼

PM
m¼1

qmði; jÞrmði; jÞ

PM
m¼1

qmði; jÞ
ð16Þ
where M is the total number of materials present in a cell.
Finally, the equations to be solved for the present problem in two dimensions can be summarized in finite difference form

as below:
En
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Here, Eqs. (17) and (18) are for free space, while Eqs. (19) and (20) are for lossy dielectrics. F
nþ1

2
x ¼ vxði; jÞHzði; jÞ and

F
nþ1

2
y ¼ vyði; jÞHzði; jÞ are x-directed and y-directed fluxes evaluated at the faces of the Yee cell, using the FCT algorithm. n

is the time index and i, j are the space indices. The conductivity values required at various electric field locations (cell faces)
are obtained by taking the average of cell-centered conductivities surrounding that face.

The computational algorithm for Scheme-2 can be described as follows:

Initialize time, t ¼ 0

(i) initialize Ex, Ey, Hz, q, r, etc.
1. E update
(i) Update electric fields using Eqs. (17)–(20)

(ii) if ðt < tBÞ then, apply source terms for electric fields, if any (This section will be used if one has an applied volt-
age excitation [11–13] rather than magnetic field excitation for establishing current flow in the system. For the
present problem we have used magnetic field excitation)
Advance time, t ¼ t þ Dt

2
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2. H update
(i) transport magnetic field using FCT; Eq. (9).

(ii) if ðt < tBÞ then, apply source terms for magnetic fields using Eq. (14). The source fields B10 and B20 are specified
at two different excitation points with one computational cell for each. See Fig. 3. This will establish a current
flow in the system.
Advance time, t ¼ t þ Dt

2

3. Material movement at full time-step
(i) advect material using FCT; Eq. (12)
(ii) update conductivity in each cell using convected density; Eqs. (15) and (16).

If t < tstop go to step 1

4. Stop

Basic steps involved in the FCT algorithm are as follows:

1. Calculate and apply the convective and diffusive fluxes in x-direction
2. Calculate and apply the convective and diffusive fluxes in y-direction
3. Add source terms, if any
4. Calculate the anti-diffusive fluxes in x and y direction
5. Limit and apply correction factors to the anti-diffusive fluxes in x and y direction
6. Compute the solution

Details of each step and its evaluation schemes can be found in [14,15]. Multi-dimensional problems in FCT are solved by
using directional splitting [14]. We have used a fully multi-dimensional flux limiter suggested in [29] and [30] for performing
step 5 above, which does not require a directional splitting algorithm.

For the present problem, r � ~H ¼ @Hx
@x þ

@Hy

@y þ
@Hz
@z

� �
¼ 0 is clearly maintained, since we only have one component of the

magnetic field, Hz, which is perpendicular to x–y plane and symmetry along z-direction is assumed.
3. Results and discussion

The present study aims at introducing a modified form of the FDTD equations for electromagnetics involving material mo-
tion, and its validation against analytical solutions. Another aim is to study the sensitivity of results to computational param-
eters such as the permittivity scaling factor. The application of this technique to real-life flux compression systems will be
reported separately.

Hence, in this section, arbitrary parameters are chosen for material conductivity r, velocity v and system dimensions so as
to minimize the overall computational demand. These parameters, of course, meet the necessary conditions discussed in Sec-
tion 2.
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3.1. Results obtained by using Scheme-2

3.1.1. Case 1
As a first step, we have chosen a flux compression system similar to the one given in [5]. The initial magnetic field outside

the compression volume is zero ðB10 ¼ 0Þ, with a compression length of 50 mm in both x and y directions. The dimensions of
the B10 region and thicknesses of walls are 20 mm and 1 mm respectively. The initial magnetic field inside the compression
volume, B20 is 1:256� 10�2 T. The total flux injected into the system is thus 3:14� 10�5 T m2 (Wb). The thickness and con-
ductivity of slab are 10 mm and 1� 106 S/m respectively. Cell-sizes are taken as Dx ¼ 0:1 mm and Dy ¼ 1 mm, leading to a
problem size of 860� 110 cells, including the distance to the boundary. A uniform velocity of 100 km/s in the positive x-
direction is given to the slab when the field reaches its peak value B20. This velocity lies in the range (20–400 km/s) offered
by plasma armatures [5,33]. This implies Rd � 251. The permittivity of the medium is artificially increased by a factor of 100,
relative to free space, to allow a larger time-step while satisfying all the constraints discussed in Section 2.

The temporal amplification of the initial magnetic field B20 due to flux compression, and the analytical solution given in
[5], is shown in Fig. 5. Good agreement is observed.

A plot showing the normalized flux inside the system is shown in Fig. 6. The total flux is evaluated for the entire compu-
tational domain. It is clear that the total flux inside the system is conserved during the compression stage. A small decrease
in the flux (�0.02%) towards the end of operation is observed, which is in the acceptable range.

There is an induced electric field (motional EMF, Ev ¼ vxBz) on the surface of the conductor moving across the magnetic
field. The computed result is compared with analytical solutions given in [5] and reasonable agreement is found, as shown in
Fig. 7.

The spatial variation of magnetic field inside the compression volume at three different times during the compression
stage is shown in Fig. 8. Data points to the left of the flat-top, at any given time, show field diffusion into the moving
conductor.
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The inductance per unit width in the z-direction, i.e., perpendicular to the plane of Fig. 3, can be calculated using Eq. (22).
L ¼ Utotal

I
¼
R

s
~B � ~dS

I
ð22Þ
where I is the total current per unit width of the conductor, ~dS is an area element in the x–y plane and Utotal is the total flux
linked with the compression volume. Here, the total area~S include only the compression volume. The variation of inductance
with time is plotted in Fig. 9, along with analytical solutions from [1]. Good agreement can be seen.

3.1.2. Case 2
We next investigate a flux compression problem described in [4], where the field outside the compression volume B10 is

non-zero. System dimensions and material parameters are the same as described in Section 3.1.1, with B10 ¼ 1:256� 10�3 T,
i.e., 10% of B20. The spatial variation of the magnetic field inside the compression volume at two different times during the
compression is shown in Fig. 10. The FDTD results are found to be in good agreement with analytical results given in [4].
Fig. 11 shows the normalized magnetic fields inside ðB2ðtÞ=BpeakÞ and outside ðB1ðtÞ=B10Þ the compression volume. Reasonable
agreement between FDTD results and analytical solutions is observed.

3.1.3. Sensitivity to permittivity scaling factor
The permittivity of the medium is scaled-up artificially as in [9–11] to achieve higher time-step by meeting all the con-

straints mentioned in Section 2.2. However, it is important to observe the extent of scaling that can be achieved without
introducing significant errors in physical quantities of practical interest, e.g., compressed magnetic field.
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Hence we next examine the sensitivity of computational results to the scaling factor used for the permittivity of free
space, i.e., �r . We consider the problem described in [5], with system dimensions given in Section 3.1.1. The scaling factor
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is varied from 10 to 10000. For each scaling factor, we compute the percentage difference between the analytical and numer-
ical solutions for the magnetic field inside the compression volume at the end of the compression. Fig. 12 shows the result.
For the case examined here, the overall error remains a few percent, although there is a monotonic increase with �r . Further-
more, the error only changes by a few percent for a change of three orders of magnitude in �r . Hence, while a higher �r would
certainly help increase the time-step and reduce the computational load, it comes at the cost of reduced accuracy. Note also
that this may significantly change for other system parameters where the diffusion scales are different.

The conclusion is that the acceptable scaling factor that can be used for achieving higher time-steps needs to be selected
carefully, depending upon system parameters and the desired accuracy level.

3.1.4. Convergence test
Next, we have performed a convergence test by comparing analytical solutions and FDTD simulated results for different

mesh-size. To investigate the sensitivity of mesh-size on the convergence of numerical results, a test problem mentioned in
[5] with system dimensions given in Section 3.1.1 has been used with permittivity scaling factor equal to 100. The mesh-size
is varied from 0.025 mm to 0.4 mm along the direction of velocity. The numerical error estimated is plotted against mesh-
size, See Fig. 13. For the case examined here, the numerical results have converged with respect to the mesh-size
(Dx � 0:1 mm). The variation of numerical error estimated with respect to permittivity scaling factor for different mesh-size
shows similar trend as discussed in (3.1.3). The acceptable mesh-size may vary for different system parameters depending
on conductivity (skin-depth), velocity, etc. Therefore, an acceptable mesh-size that can be used needs to be selected care-
fully, depending upon system parameters and the desired accuracy level.

3.2. Results obtained by using Scheme-1

A flux compression system with system dimensions described in Section 3.1.1 is used for this study. The magnetic field at
two different times during compression stage is depicted in Fig. 14. The results are found to be oscillatory in nature.
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A comparison of the spatial variation of magnetic field obtained by using two different numerical schemes namely,
Scheme-1 and Scheme-2 can be seen in a zoomed in plot shown in Fig. 15. It is clear from the figure that the results obtained
by using Scheme-1 leads to ripples in the numerical solution.

We found that the direct addition of Ev in Eq. (2) leads to ripples in numerical solutions, especially near the boundaries of
moving conductors, and these ripples then spread to the entire computational domain. However, this scheme conserve the
total magnetic flux in the system.

3.3. Parallel computation

Even sample problems of the kind discussed above require a fairly large mesh. Simulations for practical flux compression
problems would thus impose a much greater computational load. Hence it is important to examine the performance of a
parallelized version of this algorithm on a parallel cluster.

The 2-D algorithm has been parallelized using message passing interface (MPI) [32] for communication between proces-
sors. The flux compression system mentioned in Section 3.1.1 requires a mesh-size of 860 � 110 in x and y directions respec-
tively. Computer code performance has been studied on a 33 node, 3.0 GHz, Dual core, Dual Socket Xeon cluster with
Infiniband interconnect. The speedup achieved as a function of the number of processors is shown in Fig. 16. It can be seen
that the speedup varies approximately linearly with the number of processors used.

4. Limitations of the study

The present study suffers from the following major limitations. Firstly, it is extremely demanding in terms of computa-
tional power. Hence the work should be regarded as a first, exploratory step rather than as a mature technique ready for
application to design. Secondly, the spatial variation of conductivity inside the conductor, due to effects like Joule heating,
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has been neglected in the present work. It is, however, straightforward to include an arbitrary conductivity distribution con-
sistent with Joule heating in the FDTD model.

5. Conclusions

The finite difference time domain (FDTD) method, adapted for magnetic field diffusion problems, has been applied to
study electromagnetic induction in moving materials similar to magnetic flux compression systems. These simulations have
been performed using a locally-developed two-dimensional variable-mesh FDTD code that has been parallelized along two
directions. This technique allows the study of complex, multi-material configurations with arbitrary non-relativistic material
velocity. The time domain analysis allows handling of arbitrary temporal waveforms of current. This technique thus allows a
study of real-life configurations with practically no limitations on the geometric complexity, the materials used or the tem-
poral waveforms. To our knowledge, this is the first application of this powerful technique to electromagnetic problems
involving material motion.

However, the technique also suffers from the disadvantage of being extremely demanding in terms of computational
power. Hence the present work should be regarded as a first, exploratory step rather than as a mature technique ready
for application to design.
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